LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **M.Sc.** DEGREE EXAMINATION – **STATISTICS** FIRST SEMESTER - NOVEMBER 2007

ST 1810 - ADVANCED DISTRIBUTION THEORY

BB 10

Date: 31/10/2007 Time : 1:00 - 4:00

Dept. No.

Max.: 100 Marks

SECTION – A

Answer ALL the questions

 $(10 \ x \ 2 = 20)$

- 01. Find the mgf of truncated binomial distribution, truncated at 1.
- 02. Show that negative binomial distribution is a power series distribution.
- 03. Find the median of lognormal distribution.
- 04. Show that the minimum of two independent exponential random variables is exponential.
- 05. Find the mean of X_1 X_2 when (X_1, X_2) has a bivariate binomial distribution.
- 06. Let (X_1, X_2) have a bivariate Poisson distribution. Find $cov(X_1, X_2)$.
- 07. Define bivariate exponential distribution.
- 08. State the conditional distributions associated with bivariate normal distribution.
- 09. Let X₁, X₂, X₃, X₄ be independent standard normal variables. Examine whether
- $X_1-2X_2+3X_3-5X_4$ is independent of $2X_1^2-3X_2^2+X_3^2+4X_4^2-2X_1X_2+10X_1X_3+6X_1X_4$.
- 10. Let X be N(θ ,1), θ = 1, 2. If θ is discrete uniform, find the mean of the compound distribution.

SECTION – B

Answer any **FIVE** questions

(5 x 8 = 40)

- 11. State and establish a characterization of geometric distribution based on order statistics.
- 12. Find the conditional distributions associated with trinomial distribution. Hence show that the regressions are linear.
- 13. State and establish the additive property of Bivariate Poisson distribution.
- 14. Derive the mgf of inverse Gaussian distribution.
- 15. Show that the geometric mean of independent lognormal random variables is lognormal.
- 16. If (X_1, X_2) is Bivariate exponential, find the $cov(X_1, X_2)$.
- 17. State and establish any two properties of non-central chi-square distribution.
- 18. Let $X_1, X_2, X_3, \dots, X_n$ be independent N(0, 1) variables. If A is an idempotent matrix with rank r, show that $\mathbf{X}' \mathbf{A} \mathbf{X}$ is distributed as chi-square with r d.f.

SECTION – C

Answer any **TWO** questions
$$(2 \times 20 = 40)$$

- 19 a) State and establish the characterization of exponential distribution based on lack of memory property.
 - b) Given a random sample from inverse Gaussian distribution, show that \overline{X} and

 $\sum \left(\frac{1}{X_i} - \frac{1}{\overline{X}}\right)$ are independently distributed.

- 20 a) Let (X_1, X_2) have a bivariate Poisson distribution. Show that X_1 and X_2 are independent if and only if they are uncorrelated.
 - b) Show that (X_1, X_2) is bivariate normal if and only if $a_1X_1 + a_2X_2$ is normal $\forall a_1, a_2 \in \mathbb{R}$.
- 21 a) Define non-central t variable and derive its pdf.
- b) Find the mean and variance of non-central F- distribution.
- 22 a) State and establish a characterisation of bivariate exponential distribution (Marshall Olkin). b) Given a random sample from a normal distribution, find the distribution of sample variance using the theory of quadratic forms.
